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Abstract
The coastal community is confronted with heightened risks posed by climate 
change. Mobile Bay in the United States is a large estuarine system along the Gulf 
of Mexico (GOM) coast, providing critical ecosystem services for the nation. This 
region is however subject to increased urbanization and uncertain impacts of cli-
mate change. To ensure sustainability of this important ecosystem, it is imperative 
to examine the changing spatial patterns of community vulnerability to environmen-
tal changes in this region. Using data from the U.S. Census of multiple years, we 
investigate the changing spatial patterns of social vulnerability at the census block 
group level in Mobile Bay consisting of Mobile County and Baldwin County over 
the past 20 years (2000 – 2020). Additionally, we utilize hotspot and cluster analy-
ses to formalize the observations of the spatiotemporal changes. Further, we exam-
ine how land use and land cover (LULC) changes co-occur with social vulnerabil-
ity changes across Mobile Bay. We identify several hotspots where land cover has 
been converted to urban land and social vulnerability has increased. The investiga-
tion of the spatial patterns over a relatively long period helps to deepen the insight 
into the dynamic spatiotemporal changes of social and environmental vulnerability. 
This insight can better inform future plans to cope with climate change and ensure 
sustainability. Specifically, hotspots that have undergone urbanization and increased 
social vulnerability demand special attention from policy makers for future risk mit-
igation and disaster planning.

Keywords Changing spatial patterns · Environmental change · Community 
vulnerability · GIS

Introduction

The coastal region is confronted with heightened risks posed by climate change 
(IPCC, 2022). Due to the growing human population in the coast, climate change 
coupled with human activities would pose a larger threat to the health and 
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well-being of coastal communities in coming years (Pan et al., 2021; Shao et al., 
2020). The U.S. coastal communities are highly vulnerable to the adverse impacts 
of climate change and are already experiencing increased impacts of persistent 
climate stressors such as floods, hurricanes, and sea level rise (Gang et al., 2020). 
Coastal communities in the United States are projected to suffer great amounts 
of economic damage due to climate change-induced higher storm surges (Flem-
ing et al., 2018). Under climate change, coastal flooding caused by hurricanes is 
projected to increase in frequency and intensity (Lin & Emanuel, 2016; Lin et al., 
2016). The compound effects of tropical cyclone climatology and sea level rise 
will exacerbate coastal flooding in the U.S. Gulf of Mexico by the late twenty-
first century (Marsooli, et  al., 2019). Mobile River Basin (MRB), as one of the 
most biologically diverse regions of the continental U.S., provides critical eco-
system services to the nearby community and the country. The MRB occupies 
more than 20 forest ecosystems and ten wetland types. Specifically, the MRB are 
valuable natural resources to the southeast United States. However, the coastal 
ecosystem of MRB and its adjacent coasts are vulnerable to environmental stress-
ors induced by local human activities and global climate change. In 2017, the 
Mobile River was listed as one of the top ten “Most Endangered Rivers in the 
nation.” Human needs for transportation, housing, water supply, food, and timber 
have changed the basin’s habitat’s nature and quality, resulting in the fastest biotic 
extinctions in the continental U.S.

Mobile Bay is a large estuarine system along the Gulf of Mexico (GOM) coast. 
It is located within the state of Alabama, along the north-central Gulf of Mexico 
(Fig. 1). An ecologically and economically important region to the nation, Mobile 
Bay is however under increasing pressure of rapid urbanization and uncertain 
impacts of climate change (Ellis et al., 2011). Mobile Bay was designated as an estu-
ary of “national significance” in 1996 (MBNEP, 2008). The estuary contributes to 
economic development in terms of shipping, Gulf of Mexico fisheries, and recrea-
tion (MBNEP, 2008). Given its extraordinary aquatic and terrestrial biodiversity, 
the rapid land use land cover changing patterns are expected to negatively affect the 
estuary’s health (Ellis et al., 2011). Meanwhile, this region is susceptible to storm 
surges and wind damage from hurricanes. In the last 50 years, several major hur-
ricanes have impacted this region, with Hurricane Frederic (Category 3, 1979) and 
Hurricane Katrina (Category 4, 2005) being the most destructive ones (Ellis et al., 
2011). The largest surge in recent history was recorded during Hurricane Frederick 
(1979), exceeding four meters (Shao et al., 2019). During Hurricane Katrina, high 
storm surge of 3.5 m was recorded at the Mobile State Docks (Ellis et al., 2011). A 
Katrina-like hurricane would cause damages to the Port of Mobile as much as seven 
times of the damage incurred by Katrina (Abdelhafez et al., 2021). In addition, hur-
ricane wind risk is found to be the highest in the middle of the Gulf coast including 
the Alabama coastline (Trepanier et al., 2015). It is thus imperative to prepare the 
coastal community in Mobile Bay for future climate change risks. The first neces-
sary step would be to understand the changing spatiotemporal patterns of commu-
nity vulnerability in recent history so that the information can guide future resilience 
plans and help decision makers allocate resources to places with high vulnerability 
(Folke, 2006).



1 3

The Spatiotemporal Patterns of Community Vulnerability in…

Vulnerability is defined as: “The conditions determined by physical, social, eco-
nomic and environmental factors or processes which increase the susceptibility of 
an individual, a community, assets or systems to the impacts of hazards” (UNISDR, 
n.d.). Considering the ecological importance of Mobile Bay and the watershed, it is 
vital to evaluate the vulnerability of this region due to exposure to hazards or pertur-
bations (Turner et al, 2003). Social and natural systems are increasingly integrated 
and should be considered for a more holistic approach to vulnerability assessment. 
Understanding social–ecological system vulnerability requires comprehending both 
the social vulnerability and ecological vulnerability of the system  (Beroya-Eitner, 
2016).

Ecological vulnerability is considered a function of three components includ-
ing susceptibility to exposure, sensitivity to the stressor and system recovery 
potential, all of whichare influenced by system characteristics (Beroya-Eitner, 
2016). Ecological vulnerability assessment of Mobile Bay can provide valuable 
information regarding hazards as well as their impact on coastal ecosystems or 
other socioeconomic systems such as population, community, and landscape 
(Beroya-Eitner, 2016). Hazards can be natural or anthropogenic and may either 
result in short-term perturbation or long-term disturbances. The risks caused 
by climate, sea level rise and land use and land cover change in Mobile Bay 
region could be evaluated according to the ecological vulnerability analysis. In 
this study, we focus on socioeconomic and environmental characteristics of a 

Fig. 1  Study area map (a) administrative map of Mobile Bay (b) elevation map of Mobile Bay (c) loca-
tion of study area and Alabama State in context of CONUS
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community that are predisposed to the negative impacts of environmental stress-
ors. Social vulnerability to environmental hazards refers to the potentiality of loss 
of life and property damage during any events of natural hazards (Cutter et  al., 
2003). Assessing, especially quantifying social vulnerability helps policy makers 
gauge the incapability of a particular community to predict, mitigate, and recover 
from the impact of any natural hazards (Frigerio et  al., 2016). To mitigate the 
detrimental impacts of hydrological hazards such as floods and hurricanes, and 
to build a resilient community, the spatial identification of the vulnerable popu-
lation as well as reaching out to them is crucial (Roder et al., 2017). It will help 
to alleviate the severity of life loss and property damage during a catastrophe. 
Social vulnerability index (SoVI) has been widely applied in different geographic 
regions and at varying scales. Two predominant algorithms have emerged over 
the past 20 years. The first algorithm considers a wide range of sociodemographic 
variables that are usually derived from census data, applies Principal Component 
Analysis (PCA) to condensing the essential information into a fewer number of 
factors, and aggregates the factors into a composite index (Cutter et  al., 2003). 
This algorithm is found to be sensitive to the change of geographic region and 
unit of analysis (Schmidtlein et al., 2008). The second algorithm selects a number 
of socioeconomic variables based on the social vulnerability literature, organizes 
the variables into four themes, and ranks a geographic unit (e.g., census tract or 
county) against one another within a state or the entire U.S. for each variable and 
each theme (Flanagan et al., 2011).

Despite a large number of social vulnerability studies in the existing literature, 
the present study offers three novelties. First, unlike many previous studies that 
focused on county (Cutter et al., 2003; Emrich & Cutter, 2011) and census tract 
(Flanagan et al., 2011) within a large geographic region such as the contiguous 
U.S. and the Southeast U.S., this study focuses on a finer geographic unit: census 
block group within a small area Mobile Bay. The spatial distribution of social 
vulnerability at such a fine scale can assist decision makers more efficiently allo-
cate resources in the event of an emergency. Second, instead of providing a snap-
shot of the spatial distribution of social vulnerability at one point of time, this 
study provides a series of maps demonstrating the changing landscape of social 
vulnerability over the span of two decades. Furthermore, hotspot and cluster anal-
yses are utilized to formalize the observation of the spatiotemporal changes. The 
investigation of the spatial patterns over a relatively long period of time helps 
to deepen the insight into the dynamic spatiotemporal changes of social vulner-
ability. This insight can better inform future plans to cope with climate change. 
Third, along with social vulnerability, this study examines the changing pattern 
of land use and land cover (LULC) over the past 20  years. It is significant to 
examine LULC changing patterns because social vulnerability to environmental 
stressors could be accelerated by the changing pattern of LULC (Li et al., 2016). 
For instance, insufficiently planned urbanization, vegetation loss and waterbodies 
degradation can directly exacerbate social vulnerability. Therefore, it is crucial 
to detect the LULC changing pattern along with social vulnerability assessment. 
This pattern can provide insight into the broad environmental changes in this 
region.
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Data and Methods

Study Area

Mobile Bay is an inlet of the Gulf of Mexico, located within the state of Alabama 
in the United States (Fig.  1). It is surrounded by two counties: Mobile and Bald-
win. The mouth of the Mobile Bay was formed by Fort Morgan Peninsula located in 
Baldwin County in the east and Dauphin Island of Mobile County in the west (Estes 
et al., 2015). Known for its exceptional aquatic and terrestrial biodiversity, Mobile 
Bay is ecologically and economically significant as it is the fourth largest estu-
ary in the U.S. (Danielson et al., 2013). The freshwater discharge from the Mobile 
Bay watershed ranks the fourth among watersheds in the continental U.S. (Lehrter, 
2008). The shallow nature of Mobile Bay leads to freshwater discharge influenc-
ing the salinity regime, nutrient distribution, and associated biotic processes in the 
estuary (Pennock et al., 1999). Increases in agricultural activities could potentially 
exacerbate the current situation. Alarcon and McAnally (2012) estimated that over 
seventeen years some portions of the Tombigbee watershed underwent substantial 
increases of agricultural lands and lands used for grazing or hunting animals as well 
as decrease of natural forest lands. With the significant transformation in soil sur-
face coverage brought by LULC changes, the transport of nutrient and sediments 
washed-off from this watershed to Mobile Bay and the Alabama Gulf Coast has 
increased accordingly (Alarcon & McAnally, 2012). To further complicate matters, 
this region is highly susceptible to many natural disasters associated with climate 
change such as hurricanes and floods (Ellis et al., 2011). In addition, the elevation of 
Mobile Bay ranges from 110.1 m to -5.7 m above sea level (Fig. 1b).

Data Sources

A total of ten relevant variables were selected after a meticulous literature review 
(Aksha et al., 2019; Cutter et al., 2003; Roder et al., 2017; Shao et al., 2020; Wood 
et al., 2010) combined with the fact that only a limited number of variables are avail-
able at the census block group level to assess social vulnerability of the Mobile Bay 
(Table  1). Selecting these variables was initially an enormous challenge because 
of the limited variables availability for a administrative unit- block groups level. 
Despite the unavailability of variables, this study attempted to gather essential vari-
ables representing social vulnerability such as population density, economic status, 
age, gender, education, race and ethnicity. Data for each variable were extracted for 
three consecutive decennial censuses i.e. 2000, 2010 and 2020 American Commu-
nity Survey (ACS) five-year estimation from US Census Bureau (https:// data. census. 
gov/ cedsci) at block group level. Some of the variables for the 2010 census were 
extracted from 2013 ACS five-years estimation as it is the most approximated. Next, 
each variable was normalized before PCA was conducted to reduce data dimensions. 
Meanwhile, LULC data for 2001, 2011 and 2019 of Mobile Bay region were col-
lected from the National Land Cover Database (NLCD).

https://data.census.gov/cedsci
https://data.census.gov/cedsci
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Methodology

Social Vulnerability Index (SoVI) Assessment

In this study, the algorithm developed by Cutter et al. (2003) to construct the Social 
Vulnerability Index (SoVI) was adopted to assess the social vulnerability of Mobile 
Bay from 2000—2020. Principal component analysis (PCA) (Abson et al., 2012), a 
data dimension reduction technique, was applied to generate each component of the 
SoVI (Fig. 2). To construct SoVI, ten crucial social vulnerability variables either in 
percentage or density were extracted initially from the Census ACS data and nor-
malized based on their characteristics. Kaiser–Meyer–Olkin (KMO) test was also 
conducted to check adequacy of the sample and multicollinearity in the data. Fol-
lowing that, all the variables were standardized using Z-score equation (Eq. 1),

where, Z is standardized value, x is the value of each variable, µ is the mean value of 
each variable, σ in the standard deviation of each variable.

After calculating Z values for all the variables, PCA was conducted using SPSS 
software. In this case, varimax rotation (100 iterations) was considered to extract 
factor components from the census data. Following that, factor components were 
selected based on their eigenvalue (eigenvalue must be greater than 1.00). Guided by 
this criterion, there are three factor components found for census data 2000 and four 
factor components found for census data 2010 and 2020 (Table  2). These factors 
were named after their dominant variables according to the factor loading. Only var-
iables which have factor loading values greater than 0.650 or less than -0.650 were 
taken into consideration for naming. Next, cardinality of each factor was assigned 
based on their individual influences on social vulnerability. For instance, population 
and housing density have high factor loading (0.864 and 0.861 respectively) in the 
F1 factor of 2000 data. Since population and housing density positively influences 
social vulnerability, cardinality was assigned positive ( +) for this F1 factor.

(1)Z =
(x − μ)

�

Table 1  Description of data variables considered to assess social vulnerability

Variable name No Variable description

Z_PopDen 1 Population density (person/sqkm)
Z_HousingDen 2 Housing unit density (house/sqkm)
Z_Income 3 Median households’ income (Dollars)
Z_WhitePop 4 Percentage of white alone households
Z_BlackPop 5 Percentage of black alone households
Z_NoVehicle 6 Households with no available vehicle
Z_FemalePop 7 Percentage of total female population
Z_Under5 8 Percentage of population under 5 years old
Z_Above65 9 Percentage of population above 65 years old
Z_NoSchoolC 10 Percentage of population with no schooling completed
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In order to create a composite SoVI, the weight of each factor needed to be 
assessed. In the literature, there is no consensus on how to weigh each factor 
given there is a lack of theoretical arguments supporting particular weighing 
schemes. A vast number of studies assign equal weight to each factor (Rufat 
et  al., 2015). However, such assumption can be problematic as the social vul-
nerability outcome is sensitive to different weighting schemes (e.g., weighted 
vs. non-weighted) (Reckien, 2018). Some studies use the percentage of vari-
ance explained to weight each selected constituent factor (Chen et al., 2021; de 
Sherbinin & Bardy, 2015). One of the primary objectives to map social vulner-
ability is to guide policy makers in allocating resources to places/areas where 
they are needed the most. Spatial variations can illustrate the disparities of vari-
ables/factors across space. Using ratios of variance explained to the total vari-
ance explained by the selected factors to represent contributions to the final 
social vulnerability outcome can highlight factors that display the most vari-
ances explained in a spatial context which consequently highlights areas that 
need the most attention from policy makers. Thus, this study used the proportion 
of variance explained by each selected factor as the weight. Specifically, weights 
of these factors were assessed by calculating the ratio of the variance explained 
by each factor to the total variance explained by all selected factors. To gener-
ate the SoVI, all the factors were summed up by multiplying individual weights 

Fig. 2  Methodological flowchart of this study
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with each factor. Equation 2, 3 and 4 represent SoVI equations for 2000, 2010 
and 2020 census data respectively.

Following that, SoVI scores were joined with the block group shapefile of 
Mobile Bay and classified into five major categories (very low, low, moder-
ate, high and very high) using the quantile classification method in ArcGIS Pro 
software.

(2)SoVI
2000

= 0.62 F1 + 0.22 F2 + 0.16 F3

(3)SoVI
2010

= 0.48 F1 + 0.19 F2 + 0.18 F3 + 0.15 F4

(4)SoVI
2020

= 0.45 F1 + 0.21 F2 + 0.18 F3 + 0.16 F4

Table 2  Social vulnerability component summary

Census year Factor Cardinality Name % 
Variance 
explained

Dominant vari-
ables

Factor loading

2000 F1  + Population & 
Housing

43.11 Z_PopDen 0.864
Z_HousingDen 0.861

F2  + Wealth, Race & 
education

15.03 Z_Income −0.745
Z_WhitePop −0.731
Z_BlackPop 0.705
Z_NoSchoolC 0.795

F3  + Age 10.7 Z_Under5 −0.814
Z_Above65 0.826

2010 F1  + Wealth & Race 33.88 Z_Income −0.842
Z_WhitePop −0.697
Z_BlackPop 0.713

F2  + Population & 
Housing

13.36 Z_PopDen 0.931
Z_HousingDen 0.936

F3  + Age 12.58 Z_Above65 0.840
F4  + Gender (Female) 10.22 Z_FemalePop 0.902

2020 F1  + Wealth & Race 31.79 Z_Income −0.782
Z_WhitePop −0.780
Z_BlackPop 0.827

F2  + Population & 
Housing

14.73 Z_PopDen 0.891
Z_HousingDen 0.883

F3  + Age 12.61 Z_Under5 −0.813
Z_Above65 0.767

F4  + Gender (Female) 10.75 Z_FemalePop 0.840
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Social Vulnerability Hotspot Analysis

In this study, the Hotspot analysis tool (Getis-Ord Gi*) from ArcGIS Pro toolbox 
was applied to the SoVI to visualize the socially vulnerable hotspot zones in the 
Mobile Bay. In this case, polygon contiguity conceptualization was adopted for this 
hotspot analysis to define spatial relationship among block groups. Positive Gi* 
value represents hotspot zone and negative Gi* value represents the cold spot zone 
of social vulnerability.

Social Vulnerability Cluster Analysis

To investigate the changing pattern of the social vulnerability clusters, spatial auto-
correlation tests including Global Moran’s I and Local Moran’s I test developed by 
Anselin (1995) were used in this study. These tests were applied to the SoVI scores 
of each decade. The value of Global Moran’s I ranges between + 1 to -1. Moran’s 
index values close to + 1 indicate high spatial autocorrelations or high level of clus-
ter, values close to -1 suggest low spatial autocorrelation or low level of cluster and 
value of 0 indicates random spatial patterns without significant autocorrelations 
(Frigerio et al., 2018). In addition, Local Moran’s I test, Cluster and Outlier analysis 
(Anselin Local Moran’s I) were applied to illustrate the spatial distribution of social 
vulnerability clusters throughout the Mobile Bay region. In this study, polygon 
contiguity conceptualization was used to define spatial relationships among block 
groups. The entire region was categorized into five major groups in terms of social 
vulnerable clusters. These are, High-High cluster (high vulnerable block groups sur-
rounded by other high vulnerable block groups); High-Low outlier (high vulnerable 
block groups surrounded by low vulnerable block groups); Low–High outlier (low 
vulnerable block groups surrounded by high vulnerable block groups); Low-Low 
cluster (low vulnerable block groups surrounded by low vulnerable block groups) 
and not significant cluster.

LULC Change Detection

Land cover data collected from NLCD website was reclassified into six major types 
including waterbodies, urban and built-up land, barren land, forestland, grass and 
agricultural land, and wetland. Next, the transition matrix was generated using Arc-
GIS Pro software. Transition matrix is a matrix that helps to quantify the transfor-
mation of one particular LULC class to another LULC class (Twisa & Buchroithner, 
2019). Each cell of the transition matrix demonstrates the actual conversion among 
LULC classes from one to another while the diagonal cells represent the unchanged 
land classes throughout the study period (Areendran et al., 2013). So, in this study, 
a transition matrix was created to investigate land cover changing patterns of Mobile 
Bay from 2001 to 2019. Using the information from the transition matrix, a Sankey 
diagram was also produced using Python language to visualize the LULC transition 
more clearly. Following that, a bar chart was produced to visualize the land cover 
changes for each major type.
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Analysis on the Link Between LULC and Social Vulnerability Changes

To examine the link between LULC changes and social vulnerability changes, ras-
ter files of LULC from two different periods (2001 and 2019) were converted into 
polygon features using the raster to polygon tool available in ArcGIS Pro. The dis-
solve tool was then used to keep each LULC class in one polygon. After that, the 
intersect tool was used to detect actual transitions among different LULC types. This 
analysis focused solely on investigating the conversion of different LULC types into 
urban land. Meanwhile, social vulnerability changes from 2000 and 2020 were ana-
lyzed using a similar approach. Among five classes of social vulnerability, very low 
and low classes have been reclassified as low and very high and high reclassified as 
high. The intersect tool was then adopted to detect the changes of social vulnerabil-
ity among low, moderate, and high levels. Afterwards, the map depicting changes 
from various LULC types to urban land was overlaid with the map showing changes 
in social vulnerability.

Results and Discussion

Spatio‑temporal Analysis of Social Vulnerability Change

This study found that the social vulnerability has increased vastly in the past 
20 years in the Mobile Bay region. Figure 3 illustrates the steady increase of social 
vulnerability over time, especially in the center and surrounding area of Mobile city. 
Meanwhile, some cities in the northern part of Mobile County namely Prichard, 
Chickasaw, Saraland, Satsuma and Creola city had experienced the gradual surge of 
social vulnerability in the past two decades. The periphery of Mobile City had low 
social vulnerability in 2000. These areas became highly socially vulnerable by 2010 
and further increased in size by 2020. In addition to that, the northern part of Mobile 
County had experienced a dramatic increase in social vulnerability from 2010 to 
2020.

On the other hand, vast social vulnerability changes were also noticed in Baldwin 
County. The northern part of Baldwin County experienced a strong surge of social 
vulnerability. In addition, the coastal cities of Baldwin County such as Gulf shores 
and Orange Beach rose steadily from low to high vulnerability over time, mainly due 
to population growth. Moreover, Foley, Daphne and Fairhope cities inside Baldwin 
County experienced slight increase of social vulnerability in the last two decades.

Overall, in 2000, 135 block groups out of 336 were identified having either 
very high or high vulnerability social vulnerability in Mobile County and Baldwin 
County, respectively. In 2010, among 363 block groups in Mobile Bay, 143 block 
groups were found to have either very high or high social vulnerability in the study 
area, respectively. However social vulnerability expanded substantially in 2020, 
among all 452 block groups, there were 181 block groups that were identified as 
either very high or high social vulnerable in Mobile County and Baldwin County, 
respectively.
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Hotspots and Cluster Analysis

To formalize the observations made by observing the maps, hotspot and cluster 
analysis were utilized. Substantial expansion of hotspot area and reduction of 
cold spot area over time are obvious in these maps (see Fig.  4). Hotspot maps 
clearly depict that the socially vulnerable hotspots are centered in Mobile city and 
its surrounding area. Hotspot expansion can be clearly detected in the surround-
ing area of Mobile city. On the other hand, a large cold spot area was detected in 
coastal Baldwin County in 2000. However, it became a non-significant zone in 
2010 and 2020. Figure 4 also shows that the coastal area of Baldwin County has 
fallen into a non-significant zone since 2000.

Fig. 3  Spatial distribution of social vulnerability in Mobile Bay
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The Global Moran’s I results indicate a positive spatial autocorrelation for all 
decades. In the years of 2000, 2010 and 2020, Moran’s indexes were 0.62, 0.54 and 
0.54, respectively, while z values were 18.46, 16.82 and 18.79. These values indi-
cate highly clustered spatial patterns among social vulnerability clusters.

From Local Moran’s I cluster analysis, High-High cluster was detected in the 
middle of Mobile city (Fig. 5). Further, High-High social vulnerability clusters have 
expanded vastly in the western part of the city in the last two decades. Meanwhile, 
Low–High social vulnerability clusters detected alongside the Mobile Bay coast in 
Mobile City. Except for a few regions, almost the entire study area was Low-Low 
cluster in 2000, which converted into different clusters over time. However, most of 
the coastal part of Baldwin County was a Low-Low cluster in 2000 which converted 
into a non-significant cluster in 2010 and 2020.

Fig. 4  Socially vulnerable hotspot in Mobile Bay
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Spatiotemporal Analysis of LULC Change in Mobile Bay

According to the spatiotemporal LULC change analysis, the land cover of Mobile 
Bay has changed substantially over the past two decades. The dynamic transition of 
the land cover over the period are shown in the Sankey diagram (Fig. 6). Noticeably, 
urban and built up areas increased dramatically from 2001 to 2019, growing from 
85,747.05 hectare (8.96%) in 2001 to 97,488.32 hectare (10.18%) in 2019. This 
Sankey diagram shows that 394.57 hectare (0.4%) of barren land, 5409.76 hectare 
(5.55%) of forest land, 5781.46 hectare (5.93%) of grassland, 193.27 hectare (0.2%) 
of permanent water bodies, and 1062.81 hectare (1.09%) of wetlands were converted 
into urban and built-up area over the period. More detailed information about the 

Fig. 5  Spatial distribution of social vulnerability clusters in Mobile Bay
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LULC changes can be found in Supplementary Material Figure 1 maps of LULC 
types of Mobile Bay and Supplementary Material Table 1 of transition matrix.

The expansion of urban and built-up areas in Mobile City over the two dec-
ades is clearly demonstrated in Fig. 7. A few places in Baldwin County (Span-
ish fort, Daphne and Fairhope) have also experienced dramatic expansion of the 
urban area. Moreover, urban and built-up areas in the coastal part of Baldwin 
County, such as the Gulf Shore and its northern region, have increased to a large 
degree in the past two decades.

The bar chart clearly shows the increase of urban area during the study period 
(2001–2019) in the entire Mobile Bay region (Fig. 8). In 2001, urban area was 
8.96% of the total area, which increased to 9.89% in 2011 and it enlarged to 
10.18% in 2019. A small change can be noticed in forest and grassland but 

Fig. 6  Sankey diagram of LULC changes in Mobile Bay from 2001 to 2019
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permanent water bodies, wetland and barren land remain stable throughout the 
two decades.

The Link Between LULC Changes and Social Vulnerability Changes

The link between LULC changes and social vulnerability changes has been dem-
onstrated in Fig.  9. Based on the analysis conducted, the region surrounding the 
conversion of forestland and grassland into urban land has experienced a significant 
change in social vulnerability, transitioning from low to high (Fig. 9).

Similarly, in Fig.  9b, a vast area was converted to urban land from forestland. 
Consequently, social vulnerability of that region was shifted from low to high for 
the past 20 year. This co-occurrence of LULC shift to urban land and elevated social 
vulnerability over time suggests that urbanization accompanied by population con-
centration can increase coastal community’s exposure to hazards and disasters. Spe-
cial attention from policy makers needs to be paid to these particular areas and risk 
mitigation action plans need to be put in place.

Conclusion

Mobile Bay and its surrounding area are highly susceptible to a number of natu-
ral hazards such as floods and hurricanes, which are compounded by sea level rise 
under climate change. In order to effectively mitigate the devastating impact of these 
coastal hazards on the human community, it is critical to spatially identify socially 
vulnerable regions so that resources can be allocated more efficiently for disaster 
planning, response, and recovery. This study made an attempt to assess social vul-
nerability in the Mobile Bay area for two consecutive decades (from 2000—2020). 
A series of maps were constructed to display the changes of spatial distribution 
of social vulnerability over the study period. Further, hotspot analysis and cluster 
analysis were utilized to formalize the observations made by examining the maps 
of social vulnerability in 2000, 2010, and 2020, respectively. Overall, the area 
with high social vulnerability has vastly enlarged inside Mobile County, and also 
expanded in the northern part of Baldwin County. Along with social vulnerability, 
LULC changes were examined and detected. According to LULC change detection 
analysis, the urban and built-up area expanded to a large extent (11,741.27 hectares) 
from 2001 to 2019. Corresponding to urban expansion, the center of Mobile City has 
experienced an increasing trend of social vulnerability throughout the two decades. 
Socially vulnerable hotspot zones have been expanding toward the northwestern part 
of Mobile City in the last two decades. Therefore, it can be concluded that the com-
munity inside the Mobile City is becoming increasingly susceptible and vulnerable 
to coastal hazards, as a result of population growth and urban expansion over time.

Understanding the spatiotemporal dynamics of social vulnerability changes as well 
as LULC shift to urban land is vital for adopting effective disaster risk reduction strate-
gies. Such understanding can effectively help with efficient allocation of our limited 
resources during all phases of disaster management cycle (long-term risk mitigation, 
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preparedness, response, and recovery), resulting in the reduction of post disaster human 
suffering and economic losses (Flanagan et al. 2011). Results of this study are believed 
to assist policymakers in an effective disaster risk reduction process by highlighting 
socially vulnerable hotspot areas of Mobile Bay and providing a better understanding 
about spatiotemporal patterns of social vulnerability changes. This understanding will 
support disaster management authority of Mobile Bay in risk mitigation and prepared-
ness planning by providing insights of optimal locations of the future disaster resilient 
infrastructure, e.g., shelter centers, disaster recovery centers and pre-disaster training 
centers, all of which should be located in or close to highly vulnerable areas. Moreo-
ver, findings of this study will assist with the development of emergency response and 
recovery strategies during and post disasters by prioritizing highly vulnerable regions 
when allocating limited resources such as rescue equipment and effort, relief and 
recovery resources. Furthermore, the correlation analysis highlighting the relation-
ship between the dynamic pattern of LULC changes and the corresponding changes 
in social vulnerability would generate interest in further research on LULC changes 
and their relationship with social vulnerability change. Overall, this study can help 
the authority and policymakers make strategic plans to reduce social vulnerability in 
Mobile Bay and to develop a strong coping capacity during natural hazards.

There are several limitations in this study. First, because of the choice of census 
block group, many variables that are available at the county and census tract level are 
no longer available. As a result, a smaller number of variables are selected to construct 
SoVI. Second, there is no consensus on how to weigh each component of the SoVI in 
the literature. The proportion of variance explained by each factor is used as the weight-
ing scheme. Some researchers use experts’ input to weigh each factor. For instance, the 
analytic hierarchy process (AHP) has been widely used to estimate relative weights of 
factors in the complex decision-making context (Forman & Gass, 2001). Future stud-
ies on SoVI can consider this approach. Third, although the changing spatial patterns 
of social vulnerability are identified over two decades, this study has yet to validate the 
results, similar to most studies on SoVI. Moving forward, this line of research needs to 
create a framework to validate SoVI. Validation can be built upon the comparison of 
different weighting schemes.
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